High-performance biodegradable/transient electronics on biodegradable polymers.

نویسندگان

  • Suk-Won Hwang
  • Jun-Kyul Song
  • Xian Huang
  • Huanyu Cheng
  • Seung-Kyun Kang
  • Bong Hoon Kim
  • Jae-Hwan Kim
  • Sooyoun Yu
  • Yonggang Huang
  • John A Rogers
چکیده

Dr. S.-W. Hwang, J.-K. Song, Dr. X. Huang, Dr. S.-K. Kang, Dr. B. H. Kim, J.-H. Kim Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign, Urbana IL 61801 , USA H. Cheng, Prof. Y. Huang Department of Mechanical Engineering Civil and Environmental Engineering Center for Engineering and Health and Skin Disease Research Center Northwestern University, Evanston IL 60208 , USA S. Yu Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign, Urbana IL 61801 , USA Prof. J. A. Rogers Department of Materials Sicience and Engineering Chemistry, Mechanical Science and Engineering Electrical and Computer Engineering Beckman Institute for Advanced Science and Technology and Frederick Seitz Materials research Laboratory University of Illinois at Urbana-Champaign, Urbana IL 61801 , USA E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saiful Islam Khan Biodegradable Electronics

This master’s thesis is a part of ‘Human Spare Parts’ research program by BioMediTech. The aim of the research program is to integrate different branches of biomedical engineering and stem cell research to discover new and better therapies and treatments. However, this thesis concentrates on biomaterials and sensor technology. The first part of the thesis, entitled the theoretical part is dedic...

متن کامل

Materials and processing approaches for foundry-compatible transient electronics.

Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries...

متن کامل

High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and bi...

متن کامل

Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems

A simple process for nitrate removal is proposed for its application in aquaculture. Biodegradable polymer pellets are acting as solid substrate and biofilm carrier for denitrification. Laboratory experiments with conventional aquaria and fish were used to examine the feasibility and a first evaluation of the process performance in a recirculated aquaculture system. All over the test-period the...

متن کامل

Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 26 23  شماره 

صفحات  -

تاریخ انتشار 2014